

Deterministic Entanglement of Trapped-Ion Spin-Qubits

Research supported by: ARDA (P-43513-PH-QCO-02107-1) E.U. (QGATES/CONQUEST) EPSRC (QIP IRC) Royal Society

J.P.Home, G.Imreh, B.C.Keitch, D.M.Lucas, M.J.McDonnell, N.R.Thomas, D.N.Stacey, A.M.Steane and S.C.Webster Centre for Quantum Computation, Clarendon Laboratory, Oxford University, U.K.

Main points

We present experiments and theory in quantum information processing using trapped ions.

This poster concentrates on entanglement and gates: see accompanying poster for cooling, coherence.

Summary of Results

- 10 two-ion (2 qubit) Rabi flops with high visibility
- Deterministic entanglement of 2 ions (calcium 40 spin qubits) at
- Schrodinger cat with 1 ion and motion:

(< n > = 12)

- well outside Lamb-Dicke regime: $^{2}2n =$
- = 1 preserved for 422 s with 80(20)% fidelity
- also = -2.0,+2 with 2 ions robust convenient tomography method
- (th.) factorization of general phase gates (ask for details)
- (th.) composite pulses for fast gate (t=1/trap freq) insensitive to

Spin-dependent force

For two-qubit gates we use spin-dependent forces: push ions depending on spin state

Coulomb interaction gives a two-qubit phase. The force is an optical dipole force in a standing wave with polarization gradient.

Difference frequency of laser beams

- oscillating force on ion
- In Lamb-Dicke regime, extent of motional wavepacket << the force appears to be spatially uniform, and an oscillating force drives the motional state around a circular loop in phase space. It returns to the origin after t = 2 / , where =

A classical force displaces the motional state in phase space.

Outside the Lamb-Dicke regime, the trajectory of the motional state through phase space is modified, and the motional state is squeezed. The motional state returns to the origin early, ie. $t_r < 2 / .$

 $t = t_r/2$

We simulate the NLD regime behaviour by numerical integration of Schrodinger's equation.

Schrödinger Cat experiments

Coherent states of a harmonic oscillator approximate to classical motion, and a superposition of such states at mesoscopic excitation <n> is a type of Schrödinger

Oscillating spin-dependent force create such mesoscopic superpositions with single or pairs of ions. Spin state = measuring device entangled with the motion. We prove the 'cat' maintains its coherence by bringing the two parts back together and observing an interference. [As first demonstrated by Monroe et al. Science 272 1131

We observe cat states with = 5.4, $_{max}$ = 4, and a motional coherence time $T_2 = 170$ s.

Deterministic entanglement

- Deterministic (i.e. single-shot, no post-selection) entanglement of 2 spin-qubits
- gate uses oscillating spin-dependent driving force used to create Schrödinger cats, with force frequency close to str & ion separation = integer number of standing wave periods

=> only stretch mode excited

=> states acquire a phase;

Gate operation

(Leibfried et al. [Nature 422 412 (2003)].)

Experiments: $_{com} = 500 \text{ kHz}$, ion sep = 9 mm = 22

Single pulse method: Implements gate + single qubit rotations (due to light shift). = 2 and = 1/, we get the entangled state.

A further /2 analysis pulse with variable phase

demonstrates cos(2) oscillations in the parity

Two pulse method: One pulse in each half of spin-echo. Single qubit rotations cancel. Entangled state density matrix reconstructed using tomography method (see below). Fidelity 82(2)%

Single-qubit gates, 1-2 ions

Spin qubit state coherently manipulated either by magnetic resonance or by stimulated Raman transition.

Single-ion Ramsey fringes

This data is for a two-pulse Ramsey sequence using magnetic resonance with a single trapped ion. Interference fringes are seen as the RF frequency is scanned.

 $\pi/2$ pulse time=27 μ s, pulse separation=214 μ s $f_{RF}(kHz)$

2-ion spin-state = 2 qubits. Rabi flopping, here driven by the Raman transition (4.5 s time), gives a single-qubit rotation applied to both qubits simultaneously.

0.1 or 2 ions shelved EIT readout infer P(

Composite pulses for fast robust gates

Wobble gate works well at low str but is slow, At high both COM and STR modes excited, can't close both loops in a single pulse (incomensurate freq). Tailor f(t) in order to go faster? : lose insensitivity to optical phase ₀.

Tomography

In general, tomography involves accumulating information by applying well-chosen rotations to the qubits and measuring them in a fixed basis. We developed a convenient scheme which is robust against typical experimental issues.

The rotation is through about an axis in the x-y plane. is scanned from - to P(spin state) = sinusoidal functions of this allows robust curve-fitting of sin functions and 2 and an offset Each contribution to the fit yields 1 or 2 real numbers; two values of are needed for complete information. A maximum likelihood estimation method is then used to obtain the physical density matrix closest to that obtained from the data

but this has little influence for this example